New Iridacyclohexadienes and Iridabenzenes by $[2+2+1]$ Cyclotrimerization of Alkynes and Facile Interconversion between Iridacyclohexadienes and Iridabenzenes

Chong Shik Chin* and Hyungeui Lee*[a]

Abstract: Iridabenzenes $[Ir] = CHCH$ $CHCH=C(CH_2R)$ {CH₃CN)₂(PPh₃)₂]²⁺ $(R = Ph 4a, R = p-C₆H₄CH₃ 4b)$ are obtained from the reactions of H^+ with iridacyclohexadienes [Ir{-CH=CHCH= $CHC(=CH-p-C₆H₄R')(CO)(PPh₃)₂]$ ⁺ $(R' = H$ 3a, $R' = CH_3$ 3b), which are prepared from [2+2+1] cyclotrimerization of alkynes in the reactions of $[\text{Ir}(\text{CH}_3\text{CN})(\text{CO})(\text{PPh}_3)_2]^+$ with HC= CH and $HC=CR$. Iridabenzenes 4 react

with CO and $CH₃CN$ in the presence of NEt_3 to give iridacyclohexadienes $[Ir[-CH=CHCH=CHC]=CHR]$ $[CO)_2$ - $(PPh_3)_2$ ⁺ (6) and [Ir{-CH=CHCH= $CHC(=CHR)$ }(CH₃CN)₂(PPh₃)₂]⁺ (7), respectively. Iridacyclohexadienes 6

Keywords: alkynes \cdot C-C coupling \cdot diene ligands · iridium · metallacycles · vinylidene ligands

and 7 also convert to iridabenzenes 4 by the reactions with $H⁺$ in the presence of CH₃CN. Alkynyl iridacyclohex a dienes $[Ir]$ –CH=CHCH=CHC(=CH $p\text{-}C_6H_4R'\}(\text{-}C\text{=}CH)(PPh_3)_2]$ (8) undergo a cleavage of $C\equiv C$ bond by $H^+/\text{H}_2\text{O}$ to produce $[Ir]$ -CH=CHCH=CHC(= $CH-p-C₆H₄R[']$ $\{CH₃)(CO)(PPh₃)₂\}$ (10) via facile inter-conversion between iridacyclohexadienes and iridabenzenes.

Introduction

Transition-metal-mediated reactions of alkynes have been extensively investigated, since they provide interesting compounds, such as metallacycles containing unsaturated fiveand six-membered rings, $[1-3]$ that are of great interest as the key intermediates for C-C bond forming reactions between alkynes.^[2c, 3, 4] Among metallacycles, metallacyclopentadienes are well known as intermediates for cyclotrimerization of alkynes^[3] and their reactions toward the alkynes have been studied extensively.^[5] Unsaturated six-membered metallacycles, such as metallacyclohexadienes^[6]and metallabenzenes,^[7] have been also reported. While much attention has been recently paid to metallabenzenes, detailed investigation has been rarely carried out for their formation from the reactions of metals with alkynes and their reactivity.

We recently reported the proton-initiated reactions between the alkynyl and 1,3-butadiene-1,4-diyl ligands of $[\text{Ir}(-\text{CH}=\text{CHCH}=\text{CH})(\text{C}\equiv\text{CR})(\text{CO})(\text{PPh}_3)_2]$ (2)^[5d] to produce iridacyclohexadienes^[2e][Ir \overline{H} -CH=CHCH=CHC(=CH-p- C_6H_4R') $(CO)(PPh_3)_2$]BF₄ (3) and RC=CCH=CHCH=

```
[a] Prof. C. S. Chin, Dr. H. Lee
Department of Chemistry, Sogang University
Seoul 121–742 (Korea)
Fax: (+82) 2701-0967
E-mail: cschin@ccs.sogang.ac.kr
        hleegood@sogang.ac.kr
Supporting information for this article is available on the WWW
```
under http://www.chemeurj.org/ or from the author.

4518 C 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: 10.1002/chem.200400109 Chem. Eur. J. 2004, 10, 4518 – 4522

 CH_2 , ^[2c,e] respectively, from the reactions of 2 with HBF₄ and HOTf (Scheme 1).

It has been unprecedented that iridacyclohexadienes^[2e] have been isolated from the $[2+2+1]$ cyclotrimerization between alkynes, although iridacycloheptatrienes,^[8] iridium–aryls[5a] and iridium–fulvenes[5c] have been previously reported from cyclotrimerization of alkynes.

We now wish to report a new simple way of preparing iridabenzenes from iridacyclohexadienes and facile interconversion between iridacyclohexadienes and iridabenzenes.

Scheme 1. Trimerization of alkynes: formation of linear conjugated dienynes and iridacyclohexadienes.

Results and Discussion

cis-Bis(acetonitrile)iridabenzenes 4 are obtained from the reactions of iridacyclopentadienes 2 with excess $HBF₄$ in the presence of $CH₃CN$ [Eq. (1)], whereas the reactions of 2 with an excess of $HBF₄$ in the absence of $CH₃CN$ give iridacyclohexadienes 3 (see Scheme 1). In the presence of $CH₃CN$, complexes 3 also react with $HBF₄$ to give iridabenzenes 4 [Eq. (1)].

$$
2 \xrightarrow{2HBF_{4} \cdot 2CH_{3}CN} CH_{3}CN \xrightarrow{12+} CH_{3}CN \xrightarrow{12+} CH_{3}CN \xrightarrow{12+} CO
$$
\n
$$
1 \xrightarrow{12+} CH_{3}CN \xrightarrow{12+} CO
$$
\n
$$
1 \xrightarrow{12+} CO
$$
\n<

The reactions of iridacyclohexadienes 3 with HCl and DCl give dichlolo-iridabenzenes, $[Ir]=CH-CH=CH=CH$ $C(CH_2R)$ {Cl)₂(PPh₃)₂] (R = Ph 5 a, R = p-C₆H₄CH₃ 5b) and $[Ir]=CH-CH=CH=CCH+CH=C$ (CHDR) $\{(Cl),(PPh_3)_2\}$ ($[D_1]5$), respectively [Eq. (2)].

L = PPh_{3} , R = Ph (a), p-tolyl (b)

The formation of $[D_1]$ 5 suggests that methylene carbon $(=CH-p-C₆H₄R$ [']; $R' = H$ (a), $CH₃$ (b)) of aryl methenyl group in 3 is attacked by a proton.

Osmabenzene^[7f] and osmabenzyne^[9] are prepared from the reactions with alkynes, and, more recently, iridabenzene[7a] and iridanaphthalene[7a] have been obtained from the reactions of iridacycloheptatrienes^[8] prepared from the [2+2+2] cyclotrimerization of alkynes. However, no report has been made previously on iridabenzenes formed from [2+2+1] cyclotrimerization of alkynes via iridacyclopentadienes.

Iridabenzenes 4 readily lose H^+ in the presence of a base such as CO and NEt_3 to produce the 18-electron iridacyclohexadienes 6 and 7 (Scheme 2), which are also obtained from the reactions of 3 with CO and CH₃CN, respective- $\text{lv.}^{[2e, 10]}$

Iridabenzenes 4 are regenerated from the reactions of 6 and 7 with acid $(H⁺)$ in the presence of CH₃CN (Scheme 2).

L = PPh₃, R = Ph (a), p-tolyl (b)

Scheme 2. i) $2CH_3CN$, $H^{\dagger}/-2CO$; ii) $2CO/-2CH_3CN$, $-H^{\dagger}$; iii) $NEt_3/$ $-H^+NEt_3$; iv) H^+ .

It is somewhat unusual that the two CO ligands of 6 are readily replaced by two $CH₃CN$ (more labile ligand than CO in general) to give the iridabenzenes 4 (Scheme 2), and it may be mentioned that no evidence has been yet obtained for the formation of dicarbonyliridabenzenes $[Ir] = CH - CH$ $CH-CH=C(CH₂R)(CO)₂(PPh₃)₂]²⁺.$

This facile interconversion between iridacyclohexadienes (6 and 7) and iridabenzenes (4) (Scheme 2) supports the iridabenzene intermediates previously suggested (but not isolated) during the novel interconversion between iridacyclohexadienes (3 \rightarrow 6 under CO, 3 \rightarrow 7 in CH₃CN).^[2e, 10]

It may be said that this facile interconversion occurs due to the amphiprotic carbon (Ir-CH(=CH-p-C₆H₄R')–CH= CHCH=CH) bound to the α -carbon of iridacyclohexadienes.

Other types of alkynyliridacyclohexadienes (8 and 9) have been prepared [Eq. (3)] in the hope that the same type of the $C-C$ bond formation would occur to give new types of iridacycles as seen with 2 in Scheme 1.

The addition of CO to 8 may occur via iridabenzenes intermediates $(A \text{ and } B)$ [Eq. (4)].

L = PPh₃, R = Ph (a), p-tolyl (b), R' = H (a), CH₃ (b)

Unlike the alkynyliridacyclopentadienes 2, the alkynyl iridacyclohexadienes 8 and 9 do not undergo the proton-initiated C-C bond forming reaction between the alkynyl and 1,3-pentadiene-1,5-diyl ligands. Both 8 and 9 react with H⁺ to produce iridabenzenes 4 and HC=CH in the presence of excess $CH₃CN$ and unknown complexes and $HC=CH$ in the absence of CH₃CN.

In the absence of CH₃CN, the reactions of 8 with H^+ /H₂O afford the methylcarbonyliridacyclohexadienes 10 [Eq. (5)], whereas unknown compounds are obtained from reactions of 9 with aqueous H^+ . These results are strikingly different from those of the other 16-electron carbonyliridacyclohexadienes 3, which are not reactive with $H⁺$ at all in the absence of CH₃CN.

Chem. Eur. J. 2004, 10, 4518 – 4522 <www.chemeurj.org> © 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 4519

FULL PAPER C. S. Chin and H. Lee

The newly prepared complexes 4, 5, 8, 9, and 10 were unambiguously characterized by detailed spectral and elemental analysis data (see Experimental Section and Supporting Information).

Metal–vinylidenes (M=C=CHR) are frequently observed and suggested in the reactions of metal–alkynyls $(M-C\equiv$ CR) with protons.^[2,11,12] The α -carbon atom (M=C=CHR) of the vinylidene group is known to be so electrophilic that it readily interacts with a nucleophile.^[12] A detailed mechanistic study for $C \equiv C$ bond cleavage by water was previously reported.^[12a,b] Isotopomers $[$ ¹⁸**O**]10 and $[D_3]$ 10 are obtained from reactions of 8 with $H^+/H_2^{18}O$ and D^+/D_2O , respectively [Eq. (5)]. These results lead us to suggest the mechanism depicted in Scheme 3, which includes 1) the cleavage of $C\equiv$

Scheme 3. Plausible reaction pathways for the cleavage of $C=C$ bond by means of facile interconversion between iridacyclohexadienes and iridabenzenes.

C bond of the alkynyl ligand with water by means of wellestablished pathways^[12a,b] and 2) the alkyl group (CH₃) migration from the acyl ligand (CH_3CO-Ir) to the metal; this seems to be facilitated by the formation of iridabenzene intermediates H and G.

Conclusion

In conclusion, new iridacyclohexadienes and iridabenzenes have been prepared from reactions of alkynyl iridacyclopentadienes with H⁺. Reversible interconversion between iridacyclohexadienes and iridabenzenes is feasible under the appropriate conditions. Alkynyliridacyclohexadienes, unlike alkynyliridacyclopentadienes, do not undergo the proton-initiated $C-C$ bond forming reactions between the hydrocarbyl ligands, but undergo the alkyne abstraction reaction from the metal in the presence of H^+ (non-aqueous) and C \equiv C bond cleavage reaction of the alkynyl ligand in the presence of aqueous H⁺.

Experimental Section

General: A standard vacuum system and Schlenk type glassware were used in most of the experiments in handling metal complexes, although most of the compounds are stable enough to be handled in air.

 $HBF_4 \text{OE}t_2$ (54 wt% in Et₂O), DCl, and $H_2^{18}O$ were purchased from Aldrich and $[\overline{\text{Ir}[-\text{CH}=\text{CHCH}=\text{CHC}]-\text{CH-}p-C_6\text{H}_4\text{R}'}]$ (CO)(PPh₃)₂]BF₄ (3) were prepared by the literature method.^[2e]

Instruments: NMR spectra were recorded on a Varian 300 or 500 MHz spectrometer for ${}^{1}H$, 125.7 MHz for ${}^{13}C$, and 81 MHz for ${}^{31}P$. Infrared spectra were obtained on a Nicolet 205 spectrometer. Elemental analyses were carried out with a Carlo Erba EA1108 at the Organic Chemistry Center, Sogang University (Korea).

Preparation of $[\overline{\text{Ir}[\text{=CHCH=CHCH=C}(\text{CH}, \text{R})}(\text{CH}_3\text{CN})_2(\text{PPh}_3)_2][\text{BF}_4]$ $(R=Ph 4a, R=p-C₆H₄CH₃ 4b)$: A reaction mixture of 3a (0.10 g, 0.1 mmol) and HBF_4 (0.016 mL, 54 wt% in Et₂O) in CHCl₃ (10 mL) was

stirred for 1 h at 25° C in the presence of CH₃CN (0.010 g, 0.24 mmol). $Et₂O$ (30 mL) was added to precipitate light purple micro-crystals, which were collected by filtration, washed with *n*-pentane $(3 \times 10 \text{ mL})$ and dried under vacuum. The yield was 0.09 g and 95% based on 4a.

Data for 4a: ¹H NMR (500 MHz, CDCl₃, 25 °C): δ = 13.99 (d, J(H,H) = 6.9 Hz, 1H; H1), 7.3-7.6 (m, 38H; P(C_6H_5)₃, Ph, H2, H3, H4), 3.93 (s, 2H; -CH₂Ph), 2.17, 1.97 ppm (s, 6H; CH₃CN); ³¹P{¹H} NMR (81 MHz, CDCl₃, 25 °C): $\delta = -7.08$ ppm (s; PPh₃). elemental analysis calcd (%) for IrP₂C₅₂H₄₇N₂B₂F₈: C 55.38, H 4.20, N 2.48; found: C 55.94, H 4.47, N 2.58.

Data for 4b: ¹H NMR (500 MHz, CDCl₃, 25 °C): δ = 13.90 (d, J(H,H) = 7.5 Hz, 1 H; H1), 7.3–7.6 (m, 32 H; P(C_6H_5)₃, H2, H3), 6.68–7.14 (AB quartet with $\delta \nu / J = 56.62$, $J(H_A,H_B) = 8.0$ Hz, 4H; $p - C_6H_4CH_3$), 6.88 (d, $J(H,H) = 8.0$ Hz, 1H; H4), 3.87 (s, 2H; $-CH_2C_6H_4CH_3$), 2.35 (s, 3H; $-CH_2C_6H_4CH_3$), 2.14, 1.93 ppm (s, 6H; CH₃CN); ¹³C NMR (125.7 MHz, CDCl₃, 25 (C): δ = 238.40 (brs; C5), 213.51 (brs; C1), 162.94, 131.12 (2s; C2, C3), 131.90 (s; C4), 59.76 (s; $CH_2C_6H_4CH_3$), 21.05 (s; $-CH_2C_6H_4CH_3$), 4.32, 3.10 (s; CH_3CN), 127.36, 126.58 (s; CH_3CN), 129.78, 129.28 (CH carbons of CH₂C₆H₄CH₃), 134.27, 132.52, 129.15, 124.56 ppm $(P(C_6H_5)_3)$; HETCOR $(^1H (500 MHz) \rightarrow ^{13}C (125.7 MHz))$: δ =13.90 \rightarrow 213.51; 6.88 \rightarrow 131.90; 3.87 \rightarrow 59.76; 2.35 \rightarrow 21.05; 2.14 \rightarrow 4.32; 1.93→3.10 ppm. ³¹P{¹H} NMR (81 MHz, CDCl₃, 25 °C): δ = 7.01 ppm (s; *PPh₃*); IR (KBr): $\tilde{v} = 2321$ and 2291 (w, C \equiv N), 1064 cm⁻¹ (s, due to noncoordinated BF_4^- ; elemental analysis calcd (%) for $IrP_2B_2F_8C_{52}H_{47}N_2$: C 55.38, H 4.20, N 2.48; found: C 55.42, H 4.46, N 2.51.

Preparation of $IIF=CHCH=CHCH=C (CH_2R)$ {(Cl)2(PPh3)2] (R = Ph 5 a, $\mathbf{R} = p\text{-C}_{6}\mathbf{H}_{6}\mathbf{C}\mathbf{H}_{3}$ 5b): A reaction mixture of 3a (0.10 g, 0.1 mmol) in CHCl₃ (10 mL) and aqueous solution of HCl $(0.25 \text{ mmol}, 0.004 \text{ mL of})$ H₂O containing 37 wt% HCl) was stirred at 25° C for 3 h before excess HCl was removed by washing with H₂O. Addition of *n*-pentane (30 mL) resulted in purple microcrystals, which were collected by filtration, washed with *n*-pentane $(3 \times 10 \text{ mL})$ and dried under vacuum. The yield was 0.094 g and 93% based on 5a.

Data for 5a: ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 13.95 (d, J(H,H) = 7.8 Hz, 1H; H1), 7.2–7.7 (m, 30H; P(C_6H_5)₃), 7.48 (brt, $J(H,H) = 8.1$ Hz, 1H; H3), 6.99–7.07 (m, 3H; m-, p-protons of C_6H_5), 6.60 (d, $J(H,H)$ = 9.0 Hz, 1 H; $H4$), 6.48 (t, $J(H,H) = 7.8$ Hz, 1 H; $H2$), 5.88 (d, $J(H,H) =$ 8.1 Hz, 2H; *o*-protons of C₆H₅), 4.26 ppm (s, 2H; -CH₂C₆H₅); ³¹P{¹H} NMR (81 MHz, CDCl₃, 25 °C): $\delta = -12.56$ ppm (s; PPh₃); elemental analysis calcd (%) for $IrP_2C_{48}H_{41}Cl_2$: C 61.14, H 4.38; found: C 61.21, H 4.43. **Data for 5b**: ¹H NMR (500 MHz, CDCl₃, 25 °C): δ = 13.93 (d, J(H,H) = 7.5 Hz, 1H; H1), 7.2-7.7 (m, 30H; P(C_6H_5)₃), 7.48 (brt, $J(H,H) = 7.0$ Hz, 1H; H3), 5.78–6.85 (AB quartet with $\delta v/J = 35.62$, $J(H_A,H_B) = 7.8$ Hz, 4H; p-C₆H₄CH₃), 6.63 (d, J(H,H)=9.0 Hz, 1H; H4), 6.48 (t, J(H,H)= 7.8 Hz, 1H; $H2$), 4.24 (s, 2H; $-CH_2C_6H_4CH_3$), 2.26 ppm (s, 3H; $-CH_2C_6H_4CH_3$; ¹³C NMR (125.7 MHz, CDCl₃, 25[°]C): $\delta = 243.27$ (brs; C5), 223.85 (br s; C1), 157.08 (s; C3), 128.80 (s; C2), 128.26 (s; C4), 61.94 $(s; -CH_2C_6H_4CH_3)$, 20.97 $(s; -CH_2C_6H_4CH_3)$, 130.19, 125.64 (CH carbons of CH₂C₆H₄CH₃), 135.17, 130.52, 130.03, 127.40 ppm (P(C₆H₅)₃); ³¹P{¹H}

4520 C 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim <www.chemeurj.org> Chem. Eur. J. 2004, 10, 4518 – 4522

NMR (81 MHz, CDCl₃, 25[°]C): δ = - 12.50 ppm (s; PPh₃); elemental analysis calcd (%) for $IrP_2C_{49}H_{43}Cl_2$: C 61.50, H 4.53; found: C 61.29, H 4.47.

Data for [D₁]5a: Reactions with deuterated acid, DCl were carried out in the same manner as described above for that of 5a. ¹H NMR spectrum of the isotopomer $[D_1]$ 5a shows the decreased intensity of the signals due to $\text{[Ir}=\text{CH-CH=CH=CH=C}(\text{CHDPh})\text{[Cl)}_2(\text{PPh}_3)_2\text{]}$ at $\delta=4.26$ ppm.

 $Preparation$ of [Ir{-CH=CHCH=CHC(=CH- p -C₆H₄R')}(-C≡CH)- $(PPh_3)_2]$ ($R' = H 8a$, $R' = CH_3 8b$): A solution of 3a (0.1 g, 0.1 mmol) and $Me₃NO$ (0.019 g, 0.25 mmol) in CHCl₃ (10 mL) was stirred under HC \equiv

CH (1 atm) at 25° C for 30 min before the dark red solution turned dark orange. Excess Me₃NO and [HNMe₃]BF₄ were removed by extraction with H₂O (2×10 mL). Addition of *n*-hexane (10 mL) resulted in precipitation of dark orange microcrystals, which were collected by filtration, washed with *n*-hexane $(3 \times 10 \text{ mL})$, and dried under vacuum. The yield was 0.1 g or 96% based on 8a.

Data for 8a: ¹H NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.2-7.8$ (m, 30 H; $P(C_6H_5)$ ₃), 7.51 (m, 1H; *H*1), 7.00 (t, *J*(H,H) = 7.8 Hz, 2H; *m*-protons of C_6H_5), 6.55 (t, $J(H,H)$ = 7.3 Hz, 1H; p-proton of C_6H_5), 6.30 (t, $J(H,H)$ = 3.5 Hz, 1H; H6), 5.44 (ddt, J(H,H)=6.8 Hz, J(H,H)=6.8 Hz, J(H,H)= 3.2 Hz, 1 H; $H2$), 5.19 (d, $J(H,H)$ =10.5 Hz, 1 H; $H4$), 5.02 (dd, $J(H,H)$ = 10.5 Hz, J(H,H)=6.8 Hz, 1H; H3), 4.79 (br, 2H; agostic hydrogen atoms of C_6H_5), 2.48 ppm (t, $J(H,P) = 1.75 \text{ Hz}$, 1H; C \equiv CH); ¹³C NMR $(125.7 \text{ MHz}, \text{CDCl}_3, 25 \text{°C})$: $\delta = 173.68 \text{ (t, } J(C, P) = 10.4 \text{ Hz}; C5)$, 148.92 (s; C7), 141.38 (t, $J(C,P) = 5.8$ Hz; C6), 134.57 (brs; C4), 131.55 (t, $J(C,P) =$ 11.3 Hz; C1), 130.95 (s; m-C C_6H_5), 125.70 (t, $J(C,P)=3.7$ Hz; C3), 123.37 (s; o -C C_6H_5), 122.55 (s; p -C C_6H_5), 120.45 (t, $J(C,P)$ =5.2 Hz; C2), 107.16 (t, $J(C,P) = 14.1$ Hz; Ir-C=CH), 104.78 ppm (s; Ir-C=CH). HETCOR (¹H (500 MHz)→¹³C (125.7 MHz)): δ =7.51→131.55, 7.00→ 130.95, $6.55 \rightarrow 122.55$; $6.30 \rightarrow 141.38$; $5.44 \rightarrow 120.45$, $5.19 \rightarrow 134.57$, $5.02 \rightarrow$ 125.70; $4.79 \rightarrow 123.37$, $2.48 \rightarrow 104.78$ ppm; ³¹P NMR (81 MHz, CDCl₃, 25 °C): $\delta = 4.036$ ppm (s; PPh₃); IR (KBr): $\tilde{v} = 1954$ cm⁻¹ (m, C \equiv C); elemental analysis calcd (%) for $IrP_2C_{50}H_{41}$: C 67.02, H 4.61; found: C 67.10, H 4.63.

Data for 8b: ¹H NMR (500 MHz, CDCl₃, 25[°]C): δ = 7.2–7.7 (m, 30H; $P(C_6H_5)$ 3), 7.50 (m, 1H; H_1), 6.78 (brd, $J(H,H)=7.5$ Hz, 2H; m-protons of p -C₆H₄CH₃), 6.25 (t, J(H,P) = 3.5 Hz, 1H; H6), 5.43 (m, 1H; H2), 5.07 $(d, J(H,H)=10.0 \text{ Hz}, 1\text{ H}; H4)$, 4.93 (brt, $J(H,H)=6.5 \text{ Hz}, 1\text{ H}; H3)$, 4.76 (br, 2H; agostic o -protons of $p - C_6H_4CH_3$), 2.47 (t, $J(H,P) = 1.5$ Hz, 1H; C=CH), 2.09 ppm (s, 3H; p -C₆H₄CH₃); ¹³C NMR (125.7 MHz, CDCl₃, 25°C): $\delta = 171.41$ (t, $J(C,P) = 10.3$ Hz; C5), 146.80 (s; C7), 140.75 (t, $J(C,P)$ =6.2 Hz; C6), 134.09 (brs; C4), 131.93 (s; C9), 130.68 (t, $J(C,P)$ = 11.0 Hz; C1), 129.88 (s; C10), 125.22 (t, $J(C,P) = 4.1$ Hz; C3), 122.65 (s; C8), 120.63 (t, $J(C,P) = 4.9$ Hz; C2), 106.85 (t, $J(C,P) = 14.1$ Hz; Ir-C= CH), 104.94 (s; Ir-C \equiv CH), 20.84 ppm (s; p -C₆H₄CH₃); HETCOR (¹H NMR $(500 \text{ MHz}) \rightarrow ^{13}C$ NMR $(125.7 \text{ MHz}))$: $\delta = 7.50 \rightarrow 130.68, 6.78 \rightarrow$ 131.93, 6.25 \rightarrow 140.75, 5.43 \rightarrow 120.63, 5.07 \rightarrow 134.09, 4.93 \rightarrow 125.22, 4.76 \rightarrow 122.65, $2.47 \rightarrow 104.94$, $2.09 \rightarrow 20.84$ ppm; ³¹P NMR (81 MHz, CDCl₃, 25[°]C): δ = 3.176 ppm (s; PPh₃); IR (KBr): \tilde{v} = 1950 cm⁻¹ (m, C=C); elemental analysis calcd (%) for $IrP_2C_{51}H_{43}$: C 67.31, H 4.76; found: C 67.29, H 4.71.

Preparation of [Ir{-CH=CHCH=CHC(= CH- p -C₆H₄R')}(-C≡CH)(CO)- $(PPh₃)₂$] ($R' = H$ 9a, $R' = CH₃$ 9b). A solution of 8a (0.1 g, 0.1 mmol) in CHCl₃ (10 mL) was stirred under CO (1 atm) at 25° C for 1 h. n-Pentane (30 mL) was added to precipitate beige microcrystals, which were collected by filtration, washed with *n*-pentane $(3 \times 10 \text{ mL})$, and dried under vacuum. The yield was 0.09 g and 97% based on 9a.

Data for 9a: ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.52 (br; *H*1), 6.98 (brs; $H6$), 6.27 (m; $H2$), 5.41 (d, $J(H,H)$ =10.5 Hz, 1H; $H4$), 5.30 (dd, $J(H,H) = 10.5 \text{ Hz}$ and 6.3 Hz; H3), 1.75 ppm (t; C \equiv CH); ³¹P NMR

(81 MHz, CDCl₃, 25[°]C): δ = -13.15 ppm (s; PPh₃); IR (KBr): \tilde{v} = 2014 (s, C \equiv O), 1977 cm⁻¹ (m, C \equiv C); elemental analysis calcd (%) for IrP₂C₅₁H₄₁O: C 66.29, H 4.47; found: C 66.38, H 4.39.

Data for 9b: ¹H NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.2-7.8$ (m, 31 H; P(C_6H_5)₃, H1), 6.90 (brs, 1H; H6), 6.35–6.59 (AB quartet with $\delta v/J =$ 14.77, $J(H_A,H_B)=7.75$ Hz, 4H; p -C₆H₄CH₃), 6.25 (m, 1H; H2), 5.38 (d, $J(H,H) = 10.0$ Hz, 1H; $H4$), 5.28 (dd, $J(H,H) = 10.0$ Hz, $J(H,H) = 6.5$ Hz, 1H; *H*3), 2.19 (s, 3H; C₆H₄C*H*₃), 1.76 ppm (t, $J(H,P)$ =1.75 Hz, 1H; C= CH); ¹³C NMR (125.7 MHz, CDCl₃, 25[°]C): $\delta = 173.60$ (t, $J(C,P) =$ 6.73 Hz; Ir-CO), 144.64 (t, $J(C,P) = 5.84$ Hz; C6), 142.11, 134.95 (s, C_{ipso} of $C_6H_4CH_3$), 138.70 (t, $J(C,P) = 11.31 \text{ Hz}$; C5), 137.36 (t, $J(C,P) =$ 3.02 Hz; C4), 135.33 (t, $J(C,P) = 5.22$ Hz; C1), 129.70, 128.04 (2s, CH carbon atoms of $C_6H_4CH_3$), 127.56 (t, $J(C,P) = 3.65 \text{ Hz}$; C3), 127.48 (t, $J(C,P) = 4.84$ Hz; C2), 96.12 (s; Ir-C \equiv CH), 80.63 (t, $J(C,P) = 13.46$ Hz; Ir- $C\equiv CH$), 21.35 ppm (s; $C_6H_4CH_3$); HETCOR (¹H (500 MHz) \rightarrow ¹³C (125.7 MHz) : $\delta = \text{ca.}$ 7.3 \rightarrow 135.33, 6.90 \rightarrow 144.64, 6.25 \rightarrow 127.48, 5.38 \rightarrow 137.36, 5.28→127.56, 2.19→21.35, 1.76→96.12 ppm; ³¹P NMR (81 MHz, CDCl₃, 25 °C): $\delta = -12.95$ ppm (s; PPh₃); IR (KBr): $\tilde{v} = 2011$ (s, C \equiv O), 1993 cm⁻¹ (m, C \equiv C); elemental analysis calcd (%) for IrP₂C₅₂H₄₃O: C 66.58, H 4.62; found: C 66.63, H 4.64.

Preparation of $[\text{Ir}]{-}\text{CH}=\text{CHCH}=\text{CHC}({-}\text{CH-}p\text{-}C_6\text{H}_4\text{R}^2)](-\text{CH}_3)(\text{CO})$ - $(PPh_3)_2$] $(R' = H \ 10a, R' = CH_3 \ 10b)$: Aqueous HOTf (0.10 mL, 0.30 mmol of H_2O containing 35 wt% HOTf) was added to a solution of 8a (0.1 g, 0.1 mmol) in CHCl₃ (15 mL) at 25 $^{\circ}$ C, and the reaction mixture was stirred for 30 min. Excess HOTf was removed by washing with H_2O . Addition of *n*-pentane (10 mL) to the CHCl₃ solution resulted in the beige microcrystals, which were collected by filtration, washed with npentane $(3 \times 10 \text{ mL})$, and dried under vacuum. The yield was 0.08 g and 79% based on 10 a.

Data for 10 a: ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.33$ (d, $J(H,H) =$ 10.5 Hz, 1H; H1), 6.34 (m, 1H; H2), 5.95 (br s, 1H; H6), 5.77 (d, $J(H,H) = 10.5$ Hz, 1H; $H4$), 5.30 (dd, $J(H,H) = 10.5$, 6.3 Hz, 1H; $H3$), -0.31 ppm (t, $J(H,P) = 5.0$ Hz, $3H$; Ir-CH₃); ³¹P NMR (81 MHz, CDCl₃, 25 °C): $\delta = -5.99$ ppm (s; PPh₃); IR (KBr): $\tilde{v} = 2009$ cm⁻¹ (s, C \equiv O); elemental analysis calcd (%) for $IrP_2C_{50}H_{43}O$: C 65.70, H 4.74; found: C 65.00, H 4.66.

Data for $[D_3]$ **10a**: ¹H NMR spectrum of the isotopomer $[D_3]$ 10a shows all the signals for 10 a, except for the disappearance of the resonance assigned to Ir-C H_3 of 10 a.

Data for 10b: ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.35 (d, J(H,H) = 11.4 Hz, 1H; H1), 7.3-7.5 (m, 30 H; P(C_6H_5)₃), 6.67-7.05 (AB quartet with $\delta v / J = 24.62$, $J(H_A, H_B) = 7.5$ Hz, $4H$; $p - C_6H_4CH_3$, 6.34 (m, 1H; H2), 5.94 (s, 1H; $H6$), 5.78 (d, $J(H,H)$ =10.0 Hz, 1H; $H4$), 5.20 (dd, $J(H,H)$ = 10.0 Hz, $J(H,H)$ = 6.6 Hz, 1H; H3), 2.33 (s, 3H; p -C₆H₄CH₃), -0.338 ppm $(t, J(H,P)=4.95 \text{ Hz}, 3\text{ H}; \text{ Ir-}CH_3)$; ¹³C NMR (125.7 MHz, CDCl₃, 25[°]C): δ =179.80 (t, J(C,P)=8.23 Hz; Ir-CO), 145.64 (t, J(C,P)=14.3 Hz; C5), 142.01 (t, $J(C,P) = 5.78$ Hz; C6), 142.01, 131.90 (s; C_{ipso} of C₆H₄CH₃), 139.00 (t, $J(C,P) = 10.7$ Hz), 135.28 (t, $J(C,P) = 5.15$ Hz; C1, C2, C3, C4), 130.80 (t, $J(C,P) = 3.33$ Hz; C1, C2, C3, C4), 129.38, 127.98 (2s; CH carbon atoms of $C_6H_4CH_3$), 21.33 (s; $C_6H_4CH_3$), -19.22 ppm (t, J(C,P)= 6.7 Hz; Ir-CH₃); ³¹P NMR (81 MHz, CDCl₃, 25[°]C): δ = - 6.37 ppm (s; PPh₃); IR (KBr): $\tilde{v} = 2003.5 \text{ cm}^{-1}$ (s, C \equiv O); elemental analysis calcd (%) for IrP₂C₅₁H₄₅O: C 66.00, H 4.89; found: C 66.42, H 4.96.

Data for $[\text{Ir}[-\text{CH}=\text{CHCH}=\text{CHC}]-\text{CH-}p\text{-}C_6\text{H}_4\text{CH}_3)](-\text{CH}_3)(\text{C}^{18}\text{O})$ -(PPh₃)₂] ([¹⁸O]10b): IR (KBr): $\tilde{v} = 1959.0 \text{ cm}^{-1}$ (s, C \equiv O).

Acknowledgments

The authors wish to thank the Korea Research Foundation (KRF) for their financial support of this study through the Basic Science Research Institute program (Grant No. 2000–015-DP0224).

Chem. Eur. J. 2004, 10, 4518 – 4522 <www.chemeurj.org> © 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim $\overline{4521}$

^[1] a) G. Brizius, N. G. Pschirer, W. Steffen, K. Stitzer, H.-C. zur Loye, U. H. F. Bunz, J. Am. Chem. Soc. 2000, 122, 12 435; b) M. A. Esteruelas, C. García-Yebra, M. Oliván, E. Oñate, M. A. Tajada, Organometallics 2000, 19, 5098; c) A. Kasatkin, R. J. Whitby, J. Am. Chem.

Soc. 1999, 121, 7039; d) H. Werner, M. Schäfer, J. Wolf, K. Peters, H. G. von Schnering, Angew. Chem. 1995, 107, 213; Angew. Chem. Int. Ed. Engl. 1995, 34, 191; .

- [2] a) C. S. Chin, H. Lee, S. Noh, H. Park, M. Kim, Organometallics 2003, 22, 2129; b) C. S. Chin, M. Kim, G. Won, H. Chong, H. Lee, Dalton Trans. 2003, 2325; c) C. S. Chin, G. Won, D. Chong, M. Kim, H. Lee, Acc. Chem. Res. 2002, 35, 218; d) C. S. Chin, H. Lee, H. Park, M. Kim, Organometallics 2002, 21, 3889; e) C. S. Chin, M. Kim, H. Lee, S. Noh, K. M. Ok, Organometallics 2002, 21. 4785; f) C. S. Chin, M. Kim, H. Lee, Organometallics 2002, 21, 1679; g) C. S. Chin, H. Cho, G. Won, M. Oh, K. M. Ok, Organometallics 1999, 18, 4810; h) C. S. Chin, W. Maeng, D. Chong, G. Won, B. Lee, Y. J. Park, J. M. Shin, Organometallics 1999, 18, 2210.
- [3] a) H.-J. Kim, N.-S. Choi, S. W. Lee, J. Organomet. Chem. 2000, 616, 67; b) A. D. Burrows, M. Green, J. C. Jeffery, J. M. Lynam, M. F. Mahon, Angew. Chem. 1999, 111, 3228; Angew. Chem. Int. Ed. 1999, 38, 3043; ; c) E. Shirakawa, H. Yoshida, Y. Nakao, T. Hiyama, J. Am. Chem. Soc. 1999, 121, 4290; d) Y. Kishimoto, P. Eckerle, T. Miyatake, M. Kainosho, A. Ono, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1999, 121, 12 035; e) T. Hamada, D. Suzuki, H. Urabe, F. Sato, J. Am. Chem. Soc. 1999, 121, 7432; f) T. Takahashi, F.-Y. Tsai, Y. Li, K. Nakajima, M. Kotora, J. Am. Chem. Soc. 1999, 121, 11 093; g) J. H. Hardesty, J. B. Koerner, T. A. Albright, G.-Y. Lee, J. Am. Chem. Soc. 1999, 121, 6055.
- [4] a) D. F. Harvey, D. M. Sigano, *Chem. Rev.* **1996**, 96, 271; b) J. Pfeiffer, M. Nieger, K. H. Dötz, Chem. Eur. J. 1998, 4, 1843; c) V. Gevorgyan, A. Takeda, M. Homma, N. Sadayori, U. Radhakrishnan, Y. Yamamoto, *J. Am. Chem. Soc.* 1999, 121, 6491; d) M. Torrent, M. Duran, M. Sola, J. Am. Chem. Soc. 1999, 121, 1309; e) J. Narluenga, F. Aznar, I. Gutiérrez, A. Martin, S. García-Granda, M. A. Llorca-Baragaño, J. Am. Chem. Soc. 2000, 122, 1314.
- [5] a) J. M. O'Connor, A. Closson, K. Hiibner, R. Merwin, P. Gantzel, Organometallics 2001, 20, 3710; b) J. M. O'Connor, K. Hiibner, A. Closson, P. Gantzel, Organometallics 2001, 20, 1482; c) J. M. O'Connor, K. Hiibner, R. Merwin, P. K. Gantzel, B. S. Fong, J. Am. Chem. Soc. 1997, 119, 3631; d) C. S. Chin, H. Lee, M. Oh, Organometallics 1997, 16, 816; e) C. S. Chin, Y. Park, J. Kim, B. Lee, J. Chem. Soc. Chem. Commun. 1995, 1495; f) J. M. O'Connor, K. Hiibner, A. L. Rheingold, J. Chem. Soc. Chem. Commun. 1995, 1209; g) R. J. Baxter, G. R. Knox, P. L. Pauson, M. D. Spicer, Organometallics 1999, 18, 197; h) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; i) E. S. Johnson, G. J. Balaich, P. E. Fanwick, I. P. Rothwell, J. Am. Chem. Soc. 1997, 119, 11086; j) U. Radhakrishnan, V. Gevorgyan, Y. Yamamoto, Tetahedron Lett. 2000, 41, 1971.
- [6] a) R. P. Hughes, H. A. Trujillo, J. W. Egan, Jr., A. L. Rheingold, J. Am. Chem. Soc. 2000, 122, 2261; b) R. P. Hughes, H. A. Trujillo, J. W. Egan, Jr., A. L. Rheingold, Organometallics 1999, 18, 2766; c) R. P. Hughes, H. A. Trujillo, A. L. Rheingold, J. Am. Chem. Soc. 1993, 115, 1583.
- [7] a) M. Paneque, C. M. Posadas, M. L. Poveda, N. Rendón, V. Salazar, E. Oñate, K. Mereiter, *J. Am. Chem. Soc.* 2003, 125, 9898; b) J. R. Bleeke, Chem. Rev. 2001, 101, 1205, and references therein; c) W. R. Roper, Angew. Chem. 2001, 113, 2506; Angew. Chem. Int. Ed. 2001, 40, 2440; ; d) C. E. F. Rickard, W. R. Roper, S. D. Woodgate, L. J. Wright, J. Organomet. Chem. 2001, 623, 109; e) C. E. F. Rickard, W. R. Roper, S. D. Woodgate, S. F. Wright, Angew. Chem. 2000, 112, 76; Angew. Chem. Int. Ed. 2000, 39, 750; ; f) G. P. Elliott, W. R. Roper, J. M. Waters, J. Chem. Soc. Chem. Commun. 1982, 811;

g) H.-P. Wu, T. J. R. Weaklely, M. M. Haley, Organometallics 2002, 21, 4320; h) H.-P. Wu, S. Lanza, T. J. R. Weaklely, M. M. Haley, Organometallics 2002, 21, 2824; i) R. D. Gilbertson, T. J. R. Weakley, M. M. Haley, Chem. Eur. J. 2000, 6, 437; j) R. D. Gilbertson, T. J. R. Weakley, M. M. Haley, J. Am. Chem. Soc. 1999, 121, 2597; k) J. R. Bleeke, R. Behm, J. Am. Chem. Soc. 1997, 119, 8503; l) J. R. Bleeke, R. Behm, Y.-F. Xie, M. Y. Chiang, K. D. Robinson, A. M. Beatty, Organometallics 1997, 16, 606; m) V. Jacob, T. J. R. Weakley, M. M. Haley, Angew. Chem. 2002, 114, 3620; Angew. Chem. Int. Ed. 2002, 41, 3470; ; n) V. Jacob, T. J. R. Weakley, M. M. Haley, Organometallics 2002, 21, 5394.

- [8] E. Álvarez, M. Gómez, M. Paneque, C. M. Posadas, M. L. Poveda, N. Rendón, L. L. Santos, S. Rojas-Lima, V. Salazar, K. Mereiter, C. Ruiz, J. Am. Chem. Soc. 2003, 125, 1478.
- [9] a) T. B. Wen, Z. Y. Zhou, G. Jia, Angew. Chem. 2001, 113, 2005; Angew. Chem. Int. Ed. 2001, 40, 1951; ; b) T. B. Wen, S. M. Ng, W. Y. Houg, Z. Y. Zhou, M. F. Lo, L.-Y. Shek, I. D. Williams, Z. Lin, G. Jia, J. Am. Chem. Soc. 2003, 125, 884.
- [10] Compounds 6 were prepared from the reactions of 3 with CO (1 atm) and compounds 7 were synthesized by the reactions of 3 with CH₃CN in the presence of Me₃NO. See Experimental Section in reference [2c].
- [11] a) R. Castarlenas, M. A. Esteruelas, E. Oñate, Organometallics 2001, 20, 3283; b) E. Bustelo, M. Jiménez-Tenorio, M. C. Puerta, P. Valerga, Organometallics 1999, 18, 4563; c) V. Cadierno, M. P. Gamasa, J. Gimeno, Organometallics 1999, 18, 2821; d) I. de los Ríos, M. Jiménez-Tenorio, M. C. Puerta, P. Valerga, J. Am. Chem. Soc. 1997, 119, 6529; d) H. Werner, K. Ilg, B. Weberndörfer, Organometallics 2000. 19, 3145; e) M. A. Jiménez-Tenorio, M. Jiménez-Tenorio, M. C. Puerta, P. Valerga, Organometallics 2000, 19, 1333; f) J.-Y. Yang, S.- L. Huang, Y.-C. Lin, Y.-H. Liu, Y. Wang, Organometallics 2000, 19, 269; g) C. S. Chin, W. Maeng, D. Chong, G. Won, B. Lee, Y. J. Park, J. M. Shin, Organometallics 1999, 18, 2210; h) C. S. Chin, H. Cho, G. Won, M. Oh, K. M. Ok, Organometallics 1999, 18, 4810; i) C. Bohana, M. L. Buil, M. A. Esteruelas, E. Oñate, C. Valero, Organometallics 1999, 18, 5176; j) C. Bianchini, N. Mantovani, A. Marchi, L. Marvelli, D. Masi, M. Peruzzini, R. Rossi, A. Romerosa, Organometallics 1999, 18, 4501; k) C. Slugovc, K. Mereiter, R. Schmid, K. Kirchner, J. Am. Chem. Soc. 1998, 120, 6175; l) D. Huang, M. Oliván, J. C. Huffman, O. Eisenstein, K. G. Caulton, Organometallics 1998, 17, 4700; m) J. M. O'Connor, K. Hiibner, R. Merwin, P. K. Gantzel, B. S. Fong, J. Am. Chem. Soc. 1997, 119, 3631; n) J. Ipaktschi, F. Mirzaei, G. J. Demuth-Eberle, J. Beck, M. Serafin, Organometallics 1997, 16, 3965; o) S.-M. Yang, M. C.-W. Chan, K.-K. Cheung, C.-M. Che, S.-M. Peng, Organometallics 1997, 16, 2819; p) C. Bianchini, P. Innocenti, M. Peruzzini, A. Romerosa, F. Zanobini, Organometallics 1996, 15, 272; q) H. E. Selnau, J. S. Merola, J. Am. Chem. Soc. 1991, 113, 4008.
- [12] a) C. S. Chin, D. Chong, B. Maeng, J. Ryu, H. Kim, M. Kim, H. Lee, Organometallics 2002, 21, 1739; b) C. Bianchini, J. A. Casares, M. Peruzzini, A. Romerosa, F. Zanobini, J. Am. Chem. Soc. 1996, 118, 4585; c) M. V. Jiménez, E. Sola, A. P. Martínez, F. J. Lahoz, L. A. Oro, Organometallics 1999, 18, 1125; d) M. L. Buil, M. A. Esteruelas, A. M. López, E. Oñate, Organometallics 1997, 16, 3169; e) J. M. O'Connor, L. Pu, J. Am. Chem. Soc. 1990, 112, 9013.

Received: February 4, 2004 Published online: July 27, 2004